Chapter Three Dimensional Geometry

Topic-1: Direction Ratios & Direction cosines of a Line, Angle between two lines in terms of dc's and dr's, Projection of a Point on a Line

MCQs with One Correct Answer

- A line AB in three-dimensional space makes angles 45° and 120° with the positive x-axis and the positive y-axis respectively. If AB makes an acute angle θ with the positive [2007 (S), 2010] z-axis, then θ equals
 - (a) 45°

- (d) 30°
- A line makes the same angle θ , with each of the x and z axis. If the angle β, which it makes with y-axis, is such that
 - $\sin^2 \beta = 3\sin^2 \theta$, then $\cos^2 \theta$ equals

- (a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{3}{5}$ (d) $\frac{2}{3}$

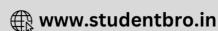
Topic-2: Equation of a Straight Line in Cartesian and Vector Form, Angle Between two Lines, Distance Between two Parallel Lines

1 MCQs with One Correct Answer

- Let Q be the cube with the set of vertices $\{(x_1, x_2, x_3) \in \mathbb{R}^3\}$: $x_1, x_2, x_3 \in \{0,1\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0, 0, 0) and (1, 1, 1) is in S. For lines ℓ_1 and ℓ_2 , let $d(\ell_1, \ell_2)$ denote the shortest distance between them. Then the maximum value of d(ℓ_1 , ℓ_2), as ℓ_1 varies over F and ℓ_2 varies over S, is [Adv. 2023]
- (a) $\frac{1}{\sqrt{6}}$ (b) $\frac{1}{\sqrt{8}}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{12}}$

- - $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4} \text{ and } \frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1} \text{ intersect, then}$ the value of k is [2004S] (c) -2/9
- 6 MCQs with One or More than One Correct Answer
- Three lines $L_1: \vec{r} = \lambda \hat{i}, \lambda \in R$ $L_2: \vec{r} = \hat{k} + \mu \hat{j}, \mu \in R$ and

- $L_3: \vec{r} = \hat{i} + \hat{j} + \nu \hat{k}, \nu \in R$
- are given. For which point(s) Q on L, can we find a point Pon L, and a point R on L, so that P, \tilde{Q} and R are collinear?
- (a) $\hat{k} \frac{1}{2}\hat{j}$ (b) \hat{k} (c) $\hat{k} + \hat{j}$ (d) $\hat{k} + \frac{1}{2}\hat{j}$
- Let L_1 and L_2 denote the lines
 - $\overrightarrow{r} = \hat{i} + \lambda(-\hat{i} + 2\hat{i} + 2\hat{k}), \lambda \in R$
 - and $\vec{r} = \mu(2\hat{i} \hat{j} + 2\hat{k}), \mu \in \mathbb{R}$
 - respectively. If L3 is a line which is perpendicular to both L_1 and L_2 and cuts both of them, then which of the following options describe(s) L_3 ? [Adv. 2019]
 - (a) $\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} \hat{k}), t \in \mathbb{R}$
 - (b) $\vec{r} = \frac{2}{9}(2\hat{i} \hat{j} + 2\hat{k}) + t(2\hat{i} + 2\hat{j} \hat{k}), t \in \mathbb{R}$
 - (c) $\vec{r} = t(2\hat{i} + 2\hat{i} \hat{k}), t \in R$
 - (d) $\overrightarrow{r} = \frac{1}{2}(2\hat{i} + \hat{k}) + t(2\hat{i} + 2\hat{j} \hat{k}), t \in \mathbb{R}$



- From a point $P(\lambda, \lambda, \lambda)$, perpendicular PQ and PR are drawn respectively on the lines y = x, z = 1 and y = -x, z = -1. If P is such that $\angle QPR$ is a right angle, then the possible value(s) of λ is/(are)

- A line I passing through the origin is perpendicular to the lines $l_1:(3+t)\hat{i}+(-1+2t)\hat{j}+(4+2t)\hat{k}, -\infty < t < \infty$ $l_2:(3+2s)\hat{i}+(3+2s)\hat{j}+(2+s)\hat{k}, -\infty < s < \infty$

Then, the coordinate(s) of the point(s) on l_2 at a distance of $\sqrt{17}$ from the point of intersection of l and l_1 is (are)

Match the Following

Let $\gamma \in \mathbb{R}$ be such that the lines

Let
$$\gamma \in \mathbb{R}$$
 be such that the lines
$$L_1 : \frac{x+11}{1} = \frac{y+21}{2} = \frac{z+29}{3} \text{ and } L_2 : \frac{x+16}{3} = \frac{y+11}{2} = \frac{z+4}{\gamma}$$

intersect. Let R_1 be the point of intersection of L_1 and L_2 . Let O = (0, 0, 0), and n denote a unit normal vector to the plane containing both the lines L1 and L2. Match each entry in List-I to the correct entry in List-II.

- (P) y equals
- (1) $-\hat{i} \hat{j} + \hat{k}$
- (Q) A possible choice for

- (R) OR1 equals

- (S) A possible value (4) $\frac{1}{\sqrt{6}}\hat{i} \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$

of $OR_1 . \hat{n}$ is

(5)
$$\sqrt{\frac{2}{3}}$$

The correct option is

[Adv. 2024]

- (a) $(P) \to (3)$ $(Q) \to (4)$ $(R) \rightarrow (1)$
- (b) (P) \to (5) (Q) \to (4) $(R) \rightarrow (1)$ $(S) \rightarrow (2)$
- (c) $(P) \rightarrow (3)$ $(Q) \rightarrow (4)$ $(R) \rightarrow (1)$
- $(S) \rightarrow (5)$

 $(S) \rightarrow (2)$

- (d) $(P) \rightarrow (3)$ $(Q) \rightarrow (1)$ $(R) \rightarrow (4)$
- $(S) \rightarrow (5)$

Match the statement in Column-I with the values in Column -II 8.

Column - II

(A) A line from the origin meets the lines $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1}$

and $\frac{x-\frac{8}{3}}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$ at P and Q respectively.

If length PQ = d, then d^2 is

(B) The values of x satisfying $\tan^{-1}(x+3) - \tan^{-1}(x-3) = \sin^{-1}\left(\frac{3}{5}\right)$ are

(q) 0

[2010]

(C) Non-zero vectors \vec{a} , \vec{b} and \vec{c} satisfy \vec{a} , \vec{b} = 0. $(\vec{b} - \vec{a}) \cdot (\vec{b} + \vec{c}) = 0$ and $2 | \vec{b} + \vec{c} | = | \vec{b} - \vec{a} |$.

If $\vec{a} = \mu \vec{b} + 4\vec{c}$, then the possible values of μ are

(D) Let f be the function on $[-\pi, \pi]$ given by f(0) = 9

and
$$f(x) = \sin\left(\frac{9x}{2}\right) / \sin\left(\frac{x}{2}\right)$$
 for $x \neq 0$

The value of $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) dx$ is

- (t)

Topic-3: Equation of a Plane in Different Forms, Equation of a Plane Passing Through the Intersection of two Given Planes, Projection of a Line on a Plane

MCQs with One Correct Answer

The equation of a plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x - y + z = 3

and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1, -1) is [2012]

- (a) 5x 11y + z = 17
- (b) $\sqrt{2}x + v = 3\sqrt{2} 1$
- (c) $x + y + z = \sqrt{3}$
- (d) $x \sqrt{2}y = 1 \sqrt{2}$
- The point P is the intersection of the straight line joining the points Q(2, 3, 5) and R(1, -1, 4) with the plane 5x - 4y-z = 1. If S is the foot of the perpendicular drawn from the point T(2, 1, 4) to QR, then the length of the line segment
 - (a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{2}$ (c) 2
- If the distance of the point P(1, -2, 1) from the plane x + 2y $-2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from P to the plane is
 - (a) $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$ (b) $\left(\frac{4}{3}, -\frac{4}{3}, \frac{1}{3}\right)$

 - (c) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ (d) $\left(\frac{2}{3}, -\frac{1}{3}, \frac{5}{2}\right)$
- Equation of the plane containing the straight line

 $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the

straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (a) x + 2y - 2z = 0 (b) 3x + 2y - 2z = 0[2010]

- (c) x-2y+z=0
- (d) 5x + 2y 4z = 0
- A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the coordinate axes. The line meets the plane 2x+y+z=9 at point Q. The length of the line segment PQ equals

 - (a) 1 (b) $\sqrt{2}$
- (c) $\sqrt{3}$
- (d) 2

Let P(3, 2, 6) be a point in space and Q be a point on the line $\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$

Then the value of μ for which the vector \overrightarrow{PO} is parallel to the plane x - 4y + 3z = 1 is

- (a) $\frac{1}{4}$ (b) $-\frac{1}{4}$ (c) $\frac{1}{8}$ (d) -
- A plane which is perpendicular to two planes 2x 2y + z =0 and x-y+2z=4, passes through (1, -2, 1). The distance of the plane from the point (1, 2, 2) is [2006 - 3M, -1]
 - (b) 1 (c) $\sqrt{2}$ (d) $2\sqrt{2}$
- A variable plane at a distance of the one unit from the origin cuts the coordinates axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$$
, then the value k is [2005S]

(c) no real value

- (a) 3 (b) 1 (c) $\frac{1}{3}$ (d) 9
- The value of k such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x - 4y + z = 7, is
 (a) 7

2 Integer Value Answer/Non-Negative Integer

10. Let $\overrightarrow{OP} = \frac{\alpha - 1}{\alpha}\hat{i} + \hat{j} + \hat{k}, \overrightarrow{OQ} = \hat{i} + \frac{\beta - 1}{\beta}\hat{j} + \hat{k}$ and

 $\overrightarrow{OR} = \hat{i} + \hat{j} + \frac{1}{2}\hat{k}$ be three vectors, where $a, b \in \mathbb{R} - \{0\}$

and O denotes the origin. If $(\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0$ and the point $(\alpha, \beta, 2)$ lies on the plane 3x + 3y - z + l = 0 then the value of l is

Three Dimensional Geometry

- 11. Let P be the plane $\sqrt{3}x + 2y + 3z = 16$ and let $S = {\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} : \alpha^2 + \beta^2 + \gamma^2 = 1 \text{ and the distance of}}$ (α, β, γ) from the plane P is $\frac{7}{2}$. Let \vec{u}, \vec{v} and \vec{w} be three distinct vectors in S such that $|\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u} , \vec{v} and \vec{w} . Then the value of $\frac{80}{\sqrt{3}}$ V is [Adv. 2023]
- 12. Let P be a point in the first octant, whose image Q in the plane x + y = 3 (that is, the line segment PQ is perpendicular to the plane x + y = 3 and the mid-point of PQ lies in the plane x + y = 3) lies on the z-axis. Let the distance of P from the x-axis be 5. If R is the image of P in the xy-plane, then the length of PR is
- If the distance between the plane Ax 2y + z = d and the plane containing the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and

$$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$
 is $\sqrt{6}$, then find |d|. [2010]

3 Numeric New Stem Based Questions

Three lines are given by $r = \lambda i, \lambda \in R$;

$$\vec{r} = \mu(\hat{i} + \hat{j}), \mu \in \mathbb{R}$$
 and $\vec{r} = \nu(\hat{i} + \hat{j} + \hat{k}), \nu \in \mathbb{R}$. Let the lines cut the plane $x + y + z = 1$ at the points A, B and C respectively. If the area of the triangle ABC is Δ then the value of $(6\Delta)^2$ equals [Adv. 2019]

Fill in the Blanks

- A nonzero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors \hat{i} , \hat{i} + \hat{j} and the plane determined by the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$. The angle between \vec{a} and the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ is [1996 - 2 Marks]
- The unit vector perpendicular to the plane determined by P(1,-1,2), Q(2,0,-1) and R(0,2,1) is [1983 - 1 Mark]

6 MCQs with One or More than One Correct Answer

17. Let $\mathbb R$ denote the three-dimensional space. Take two points P = (1, 2, 3) and Q = (4, 2, 7). Let dist (X, Y) denote the distance between two points X and Y in \mathbb{R}^3 . Let $S = \{X \in \mathbb{R}^3 : (\text{dist}(X, P))^2 - (\text{dist}(X, Q))^2 = 50\} \text{ and }$ $T = \{Y \in \mathbb{R}^3 : (dist(Y, Q))^2 - (dist(Y, P))^2 = 50\}.$ Then which of the following statements is (are) TRUE?

[Adv. 2024]

- (a) There is a triangle whose area is 1 and all of whose vertices are from S.
- (b) There are two distinct points L and M in T such that each point on the line segment LM is also in T.

- (c) There are infinitely many rectangles of perimeter 48, two of whose vertices are from S and the other two vertices are from T.
- (d) There is a square of perimeter 48, two of whose vertices are from S and the other two vertices are from T.
- 18. A straight line drawn from the point P(1, 3, 2), parallel to

the line
$$\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$$
, intersects the plane

 $L_1: x-y+3z=6$ at the point Q. Another straight line which passes through Q and is perpendicular to the plane L_1 intersects the plane L_2 : 2x - y + z = -4 at the point R. Then which of the following statements is (are) TRUE?

- (a) The length of the line segment PQ is $\sqrt{6}$
- (b) The coordinates of R are (1, 6, 3)
- (c) The centroid of the triangle PQR is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
- (d) The perimeter of the triangle PQR is $\sqrt{2} + \sqrt{6} + \sqrt{11}$
- Let P_1 and P_2 be two planes given by [Adv. 2022] $P_1: 10x + 15y + 12z - 60 = 0$, $P_{2}: -2x + 5y + 4z - 20 = 0$.

Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on P_1 and P_2 ?

(a)
$$\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{5}$$
 (b) $\frac{x-6}{-5} = \frac{y}{2} = \frac{z}{3}$

(c)
$$\frac{x}{-2} = \frac{y-4}{5} = \frac{z}{4}$$
 (d) $\frac{x}{1} = \frac{y-4}{-2} = \frac{z}{3}$

Let S be the reflection of a point Q with respect to the plane given by $\vec{r} = -(t+p)\hat{i} + t\hat{j} + (1+p)k$ where t, p are real parameters and $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors along the three positive coordinate axes. If the

position vectors of Q and S are $10\hat{i} + 15\hat{j} + 20\hat{k}$ and $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ respectively, then which of the following

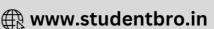
- (a) $3(\alpha + \beta) = -101$
- (b) $3(\beta + \gamma) = -71$
- (c) $3(\gamma + \alpha) = -86$ (d) $3(\alpha + \beta + \gamma) = -121$
- 21. Let L₁ and L₂ be the following straight line.

$$L_1: \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{3}$$
 and $L_2: \frac{x-1}{-3} = \frac{y}{-1} = \frac{z-1}{1}$.

Suppose the straight line L:
$$\frac{x-\alpha}{l} = \frac{y-1}{m} = \frac{z-\gamma}{-2}$$

lies in the plane containing L1 and L2, and passes through the point of intersection of L₁ and L₂. If the line L bisects the acute angle between the lines L1 and L2, then which of the following statements is/are TRUE? [Adv. 2020]

- (a) $\alpha \gamma = 3$
- (b) l + m = 2
- (c) $\alpha \gamma = 1$
- (d) l + m = 0



22. Let α , β , γ , δ be real numbers such that $\alpha^2 + \beta^2 + \gamma^2 \neq 0$ and $\alpha + \gamma = 1$. Suppose the point (3, 2, -1) is the mirror image of the point (1, 0, -1) with respect to the plane $\alpha x + \beta y + \gamma z = \delta$.

Then which of the following statements is/are TRUE?

- (a) $\alpha + \beta = 2$
- (b) $\delta \gamma = 3$
- (c) $\delta + \beta = 4$
- (d) $\delta + \beta + \gamma = \delta$
- 23. Let $P_1: 2x+y-z=3$ and $P_2: x+2y+z=2$ be two planes. Then, which of the following statement(s) is (are)

- (a) The line of intersection of P1 and P2 has direction
- (b) The line $\frac{3x-4}{9} = \frac{1-3y}{9} = \frac{z}{3}$ is perpendicular to the line of intersection of P1 and
- (c) The acute angle between P₁ and P₂ is 60°.
 (d) If P₃ is the plane passing through the point (4, 2, -2) and perpendicular to the line of intersection of P₁ and P₂, then the distance of the point (2, 1, 1) from the

plane P₃ is $\frac{2}{\sqrt{3}}$

- 24. Consider a pyramid OPQRS located in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ with O as origin, and OP and OR along the x-axis and the y-axis, respectively. The base OPQR of the pyramid is a square with OP = 3. The point S is directly above the mid-point, Tofdiagonal OQ such that TS=3. Then [Adv. 2016]
 - (a) the acute angle between OQ and OS is $\frac{\pi}{3}$
 - (b) the equation of the plane containing the triangle OQS
 - (c) the length of the perpendicular from P to the plane containing the triangle OQS is $\frac{3}{\sqrt{2}}$
 - (d) the perpendicular distance from O to the straight line containing RS is $\sqrt{\frac{15}{2}}$
- In \mathbb{R}^3 , let L be a straight line passing through the origin. Suppose that all the points on L are at a constant distance

from the two planes $P_1: x+2y-z+1=0$ and $P_2: 2x-y+1=0$ z-1=0. Let M be the locus of the feet of the perpendiculars drawn from the points on L to the plane P_1 . Which of the following points lie (s) on M?

- (a) $\left(0, -\frac{5}{6}, -\frac{2}{3}\right)$ (b) $\left(-\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}\right)$
- (c) $\left(-\frac{5}{6},0,\frac{1}{6}\right)$ (d) $\left(-\frac{1}{3},0,\frac{2}{3}\right)$
- In R^3 , consider the planes $P_1: y = 0$ and $P_2: x + z = 1$. Let P_3 be the plane, different from P_1 and P_2 , which passes through the intersection of P_1 and P_2 . If the distance of the point (0, 1, 0) from P_3 is 1 and the distance of a point (α, β, γ) from P_3 is 2, then which of the following relations is (are) true? [Adv. 2015]
 - (a) $2\alpha + \beta + 2\gamma + 2 = 0$ (b) $2\alpha \beta + 2\gamma + 4 = 0$
- - (c) $2\alpha + \beta 2\gamma 10 = 0$ (d) $2\alpha \beta + 2\gamma 8 = 0$
- 27. Two lines $L_1: x = 5$, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha$, $\frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take value(s) (a) 1 (b) 2 (c) 3
- 28. If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane (s) containing these two lines is (are)
- (b) y+z=-1
- (c) y-z=-1
- (d) y-2z=-1
- 29. Let A be vector parallel to line of intersection of planes P_1 and P_2 . Plane P_1 is parallel to the vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and that P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between vector \vec{A} and a given vector $2\hat{i} + \hat{j} - 2\hat{k}$ is [2006 - 5M, -1]
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{3\pi}{4}$

Match the Following

- 30. Let ℓ_1 and ℓ_2 be the lines $\vec{r}_1 = \lambda(\hat{i} + \hat{j} + \hat{k})$ and
 - $\vec{r}_2 = (\hat{j} \hat{k}) + \mu(\hat{i} + \hat{k})$, respectively. Let X be the set of all the planes H that contain the line ℓ_1 . For a plane H, let d(H) denote the smallest possible distance between the points of ℓ_2 and H. Let H_0 be a plane in X for which $d(H_0)$ is the maximum value of d(H) as H varies over all planes in X.

Match each entry in List-I to the correct entries in List-II.

List-II

(P) The value of d(H₀) is

(Q) The distance of the point (0, 1, 2) from H₀ is

Three Dimensional Geometry

B81

Adv. 2023]

- (R) The distance of origin from Ho is
- (S) The distance of origin from the point of intersection of planes y = z, x = 1 and H₀ is
- (3)
- (4) √2
- (5) $\frac{1}{\sqrt{2}}$

The correct option is:

- (a) $(P) \rightarrow (2), (Q) \rightarrow (4), (R) \rightarrow (5), (S) \rightarrow (1)$
- (b) $(P) \rightarrow (5), (Q) \rightarrow (4), (R) \rightarrow (3), (S) \rightarrow (1)$
- (c) $(P) \rightarrow (2), (Q) \rightarrow (1), (R) \rightarrow (3), (S) \rightarrow (2)$
- (d) $(P) \rightarrow (5), (Q) \rightarrow (1), (R) \rightarrow (4), (S) \rightarrow (2)$

31. Consider the lines $L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}, L_2: \frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$ and the

planes $P_1: 7x + y + 2z = 3$, $P_2 = 3x + 5y - 6z = 4$. Let ax + by + cz = d be the equation of the plane passing through the point of intersection of lines L_1 and L_2 , and perpendicular to planes P_1 and P_2 .

Match List I with List II and select the correct answer using the code given below the lists:

[Adv. 2013]

List I

- P. a=
- Q. b=
- R c =
- S. d=
- . .

List II

- 1. 13
- 2 -3
- 3.
- 4. -

Codes:

PQR

- (a) 3 2 4
- (b) 1 3 4 2
- (c) 3 2 1 4
- (d) 2 4 1 3
- Match the statements/expressions given in Column-I with the values given in Column-II. [2009]

Column-I

Column-II

- (A) The number of solutions of the equation
 - $x e^{\sin x} \cos x = 0$ in the interval $\left(0, \frac{\pi}{2}\right)$
- (B) Value(s) of k for which the planes kx + 4y + z = 0, 4x + ky + 2z = 0 (q) 2 and 2x + 2y + z = 0 intersect in a straight line
- (C) Value(s) of k for which |x-1|+|x-2|+|x+1|+|x+2|=4k (r) has integer solution(s)
- (D) If y' = y + 1 and y(0) = 1, then value(s) of y(1n 2)
- (s) 4
- (t) 5

33. Consider the following linear equations

$$ax + by + cz = 0$$
; $bx + cy + az = 0$; $cx + ay + bz = 0$

Match the conditions/expressions in Column I with statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the *ORS*. [2007]

Column

- (A) $a+b+c \neq 0$ and $a^2+b^2+c^2=ab+bc+ca$
- (B) a+b+c=0 and $a^2+b^2+c^2 \neq ab+bc+ca$
- (C) $a+b+c \neq 0$ and $a^2+b^2+c^2 \neq ab+bc+ca$
- (D) a+b+c=0 and $a^2+b^2+c^2=ab+bc+ca$

Column II

- (p) the equations represent planes meeting only at a single point
- (q) the equations represent the line x = y = z.
- (r) the equations represent identical planes.
- (s) the equations represent the whole of the three dimensional space.

[2006-6M]

34. Match the following:

Column I

- (A) Two rays x + y = |a| and ax y = 1 intersects each other in the first quadrant in the interval $a \in (a_0, \infty)$, the value of a_0 is
- (B) Point (α, β, γ) lies on the plane x + y + z = 2. Let $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, $\hat{k} \times (\hat{k} \times \vec{a}) = 0$, then $\gamma =$
- (C) $\left| \int_{0}^{1} (1-y^{2}) dy \right| + \left| \int_{0}^{1} (y^{2}-1) dy \right|$
- (D) If $\sin A \sin B \sin C + \cos A \cos B = 1$, then the value of $\sin C =$

8 Comprehension/Passage Based Questions

onsider the lines
$$L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2} \quad L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}$$
[2008]

- 35. The unit vector perpendicular to both L_1 and L_2 is
 - (a) $\frac{-\hat{i} + 7\hat{j} + 7\hat{k}}{\sqrt{99}}$ (b) $\frac{-\hat{i} 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$
 - (c) $\frac{-\hat{i}+7\hat{j}+5\hat{k}}{5\sqrt{3}}$ (d) $\frac{7\hat{i}-7\hat{j}-\hat{k}}{\sqrt{99}}$
- The shortest distance between L_1 and L_2 is
 - (b) $\frac{17}{\sqrt{3}}$ (c) $\frac{41}{5\sqrt{3}}$ (d) $\frac{17}{5\sqrt{3}}$
- 37. The distance of the point (1, 1, 1) from the plane passing through the point (-1, -2, -1) and whose normal is perpendicular to both the lines L1 and L2 is
 - (a) $\frac{2}{\sqrt{75}}$ (b) $\frac{7}{\sqrt{75}}$ (c) $\frac{13}{\sqrt{75}}$ (d) $\frac{23}{\sqrt{75}}$

9 Assertion and Reason/Statement Type Questions

38. Consider three planes

$$P_1: x-y+z=1$$

 $P_3: x-3y+3z=2$
 $P_2: x+y-z=-1$

Let L_1 , L_2 , L_3 be the lines of intersection of the planes P_2 and P_3 , P_3 and P_1 , P_1 and P_2 , respectively.

STATEMENT - 1: At least two of the lines L_1 , L_2 and L_3 are non-parallel and

STATEMENT - 2: The three planes doe not have a common point.

- (A) STATEMENT 1 is True, STATEMENT 2 is True; STATEMENT - 2 is a correct explanation for STATEMENT - 1
- (B) STATEMENT 1 is True, STATEMENT 2 is True; STATEMENT - 2 is NOT a correct explanation for STATEMENT - 1
- (C) STATEMENT 1 is True, STATEMENT 2 is False
- (D) STATEMENT 1 is False, STATEMENT 2 is True
- 39. Consider the planes 3x 6y 2z = 15 and 2x + y 2z = 5. STATEMENT-1: The parametric equations of the line of intersection of the given planes are x = 3 + 14t, y = 1 + 2t, z = 1 + 2t=15t. because

Column II

- (p)

(r)
$$\left| \int_{0}^{1} \sqrt{1-x} dx \right| + \left| \int_{-1}^{0} \sqrt{1+x} dx \right|$$

STATEMENT-2: The vector $14\hat{i} + 2\hat{j} + 15\hat{k}$ is parallel to the line of intersection of given planes. [2007 - 3 marks]

- Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False
- (d) Statement-1 is False, Statement-2 is True.

Subjective Problems

Find the equation of the plane containing the line

2x - y + z - 3 = 0, 3x + y + z = 5 and at a distance of

- from the point (2, 1, -1). [2005 2 Marks] P_1 and P_2 are planes passing through origin. L_1 and L_2 are two line on P_1 and P_2 respectively such that their intersection is origin. Show that there exists points A, B, C, whose permutation A', B', C can be chosen such that (i) A is on L_1 , B on P_1 but not on L_1 and C not on P_1 (ii) A' is on L_2 , B' on P_2 but not on L_2 and C' not on P_2 [2004 - 4 Marks]
- A parallelepiped 'S' has base points A, B, C and D and upper face points A', B', C and D'. This parallelepiped is compressed by upper face A'B'C'D' to form a new parallelepiped 'T' having upper face points A", B", C' and D". Volume of parallelepiped T is 90 percent of the volume of parallelepiped S. Prove that the locus of 'A"', is a plane. [2004 - 2 Marks]

Find the equation of plane passing through (1, 1, 1) & parallel to the lines L_1, L_2 having direction ratios (1,0,-1), (1,-1,0). Find the volume of tetrahedron formed by origin and the points where these planes intersect the coordinate axes. [2004 - 2 Marks]

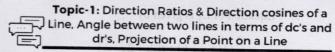
- (i) Find the equation of the plane passing through the points (2, 1, 0), (5, 0, 1) and (4, 1, 1).
 - (ii) If P is the point (2, 1, 6) then find the point Q such that PQ is perpendicular to the plane in (i) and the mid point of PQ lies on it. [2003 - 4 Marks]

?

Answer Key

Topic-1: Direction Ratios & Direction cosines of a Line, Angle between two lines in terms of dc's and dr's, Projection of a Point on a Line 2. (c) 1. (b) Topic-2: Equation of a Straight Line in Cartesian and Vector Form, Angle Between two Lines, Distance Between two Parallel Lines 4. (a,b,d) 5. (c) 6. (b,d) 7. (c) 8. (A)-t; (B)-p, r; (C)-q, s; (D)-r 1. (a) Topic-3: Equation of a Plane in Different Forms, Equation of a Plane Passing Through the Intersection of two Given Planes, Projection of a Line on a Plane 9. (a) 10. (5) 4. (c) 5. (c) 6. (a) 7. (d) 8. (d) 1. (a) 2. (a) 14. (0.75) 15. $\frac{\pi}{4}$, $\frac{3\pi}{4}$ 16. $\pm \frac{(2\hat{i}+\hat{j}+\hat{k})}{\sqrt{6}}$ 13. (6) 17. (a,b,c) 18. (a,c) 19. (a,b) 20. (a,b,c) 21. (a,b) 22. (a,b,c) 23. (c,d) 24. (b,c,d) 25. (a,b) 26. (b,d) 27. (a,d) 28. (b,c) 29. (b,d) **32.** (A)-p; (B)-q, s; (C)-q, r, s, t; (D)-t **33.** (A)-r; (B)-q; (C)-p; (D)-s 31. (a) **36.** (d) **37.** (c) **38.** (d) 34. (A)-s; (B)-p; (C)-q, r; (D)-s 35. (b)

Hints & Solutions



(b) As per question, direction cosines of the line:

$$\ell = \cos 45^\circ = \frac{1}{\sqrt{2}}$$
, $m = \cos 120^\circ = \frac{-1}{2}$, $n = \cos \theta$

where θ is the angle, which line makes with positive

We know that, $\ell^2 + m^2 + n^2 = 1$

$$\Rightarrow \frac{1}{2} + \frac{1}{4} + \cos^2 \theta = 1$$

$$\cos^2\theta = \frac{1}{4}$$

$$\Rightarrow \cos\theta = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\Rightarrow \theta = \frac{\pi}{3}$$

(c) As per question the direction cosines of the line are

$$\therefore \cos^2 \theta + \cos^2 \beta + \cos^2 \theta = 1$$

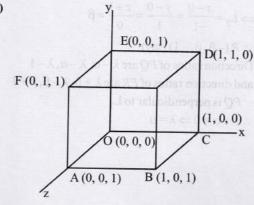
$$2\cos^2\theta = 1 - \cos^2\theta$$

$$\Rightarrow 2\cos^2\theta = \sin^2\beta = 3\sin^2\theta$$

$$\Rightarrow$$
 $2\cos^2\theta = 3 - 3\cos^2\theta$

$$\therefore \cos^2 \theta = \frac{3}{5}$$

Topic-2: Equation of a Straight Line in Cartesian and Vector Form, Angle Between two Lines, Distance Between two Parallel Lines



Equation of face diagonal OD line is $l_1 : \vec{r} = \lambda (\hat{i} + \hat{j})$

Equation of main diagonal BE is

$$l_2: \vec{r} = \hat{j} + \mu(\hat{i} - \hat{j} + \hat{k})$$

Shortest distance =
$$\frac{\left| j.(\hat{i} + \hat{j}) \times (\hat{i} - \hat{j} + \hat{k}) \right|}{(\hat{i} + \hat{j}) \times (\hat{i} - \hat{j} + \hat{k})}$$

$$= \left| \frac{\hat{j} \cdot (\hat{i} - \hat{j} - 2\hat{k})}{\hat{i} - \hat{j} - 2\hat{k}} \right| = \frac{1}{\sqrt{6}}$$

- 2. **(b)** Let $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4} = \lambda$
 - \Rightarrow $x = 2\lambda + 1, y = 3\lambda 1$ and $z = 4\lambda + 1$

and
$$\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1} = \mu$$

 $\Rightarrow x = 3 + \mu, y = k + 2\mu \text{ and } z = \mu$

Since given lines intersect each other

$$\Rightarrow 2\lambda + 1 = 3 + \mu$$
 ...(i)

$$3\lambda - 1 = 2\mu + k \qquad ...(ii)$$

$$\mu = 4\lambda + 1$$
 (iii)

Solving (i) and (iii) and putting the value of λ and μ

in (ii) we get,
$$k = \frac{9}{2}$$

(a, d) Let any point

$$P(\lambda,0,0)$$
 on L_1 , $Q(0,\mu,1)$ on L_2 and $R(1,1,\nu)$ on L_3

 \therefore P, Q, R are collinear, $\therefore \overrightarrow{PQ} \parallel \overrightarrow{PR}$

$$\Rightarrow \frac{\lambda}{\lambda - 1} = \frac{-\mu}{-1} = \frac{-1}{-\nu}$$

$$\Rightarrow \mu = \frac{\lambda}{\lambda - 1}, \nu = \frac{\lambda - 1}{\lambda}$$

Clearly from above that $\lambda \neq 0,1$

$$\therefore \mathcal{Q}\left(0,\frac{\lambda}{\lambda-1},1\right)$$

(a) For
$$Q = \hat{k} - \frac{1}{2}\hat{j}$$

$$\frac{\lambda}{\lambda - 1} = -\frac{1}{2} \Longrightarrow 3\lambda = +1$$
, which is possible.

(b) For
$$Q = \hat{k}$$

$$\frac{\lambda}{\lambda - 1} = 0 \Rightarrow \lambda = 0, \text{ not possible}$$

(c) For
$$Q = \hat{k} + \hat{j}$$

$$\frac{\lambda}{\lambda - 1} = 1 \Rightarrow \lambda = \lambda - 1, \text{ not possible}$$

(d) For
$$Q = \hat{k} + \frac{1}{2}\hat{j}$$

$$\frac{\lambda}{\lambda - 1} = \frac{1}{2} \Rightarrow 2\lambda = \lambda - 1 \Rightarrow \lambda = -1,$$

which is possible

Hence options (a) and (d) are correct and options (b) and (c) are incorrect.

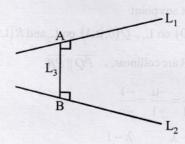
4. **(a, b, d)**
$$L_1 : \overrightarrow{r} = \hat{i} + \lambda(-i + 2j + 2\hat{k}) L_2 : \overrightarrow{r}$$

= $\mu(2i - j + 2\hat{k})$

Since L_3 being perpendicular to both L_1 and L_2 , is the shortest distance line between L_1 & L_2 .

.. Direction vector of line
$$L_3$$
 : $(-\hat{i}+2\hat{j}+2\hat{k}) \times (2\hat{i}-\hat{j}+2\hat{k})$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{vmatrix} = 6\hat{i} + 6\hat{j} - 3\hat{k}$$



... L_1 and L_2 are skew lines Let any point on L_1 and L_2 be $A(1-\lambda, 2\lambda, 2\lambda) \text{ and } B(2\mu, -\mu, 2\mu).$... dr's of $AB = 2\mu + \lambda - 1, -\mu - 2\lambda, 2\mu - 2\lambda$... AB and L_3 are representing the same line

$$\therefore \quad \frac{2\mu + \lambda - 1}{6} = \frac{-\mu - 2\lambda}{6} = \frac{2\mu - 2\lambda}{-3}$$

$$\Rightarrow 3\lambda + 3\mu = 1 \qquad ...(i)$$

$$6\lambda - 3\mu = 0 \qquad ...(ii)$$

Solving (i) and (ii) we get: $\lambda = \frac{1}{9}$, $\mu = \frac{2}{9}$

$$\therefore \quad A\left(\frac{8}{9}, \frac{2}{9}, \frac{2}{9}\right) \text{ and } B\left(\frac{4}{9}, \frac{-2}{9}, \frac{4}{9}\right)$$

:. Equation of L₃ is given by

$$\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2i + 2j - \hat{k})$$

: (a) is correct.

or
$$\overrightarrow{r} = \frac{2}{9}(2\hat{i} - \hat{j} + 2\hat{k}) + t(2i + 2j - \hat{k})$$

: (b) is correct

Also mid-point of AB is $\left(\frac{2}{3}, 0, \frac{1}{3}\right)$

:. L₃ can also be written as

$$\vec{r} = \frac{1}{3}(2\hat{i} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k})$$
, where $t \in \mathbb{R}$

: (d) is correct.

Clearly (0, 0, 0) does not lie on

$$\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k})$$

- $\vec{r} = t(2\hat{i} + 2\hat{j} \hat{k})$ can not describe the line L₂.
- : (c) is incorrect.
- 5. (c) Given that lines are x = y, z = 1

$$\Rightarrow L_1 = \frac{x-0}{1} = \frac{y-0}{1} = \frac{z-1}{0} = \alpha$$
 ...(i)

 $\therefore Q(\alpha, \alpha, 1)$

and
$$y = -x$$
, $z = -1$

$$\Rightarrow L_2 = \frac{x-0}{-1} = \frac{y-0}{1} = \frac{z+1}{0} = \beta$$
 ...(ii)

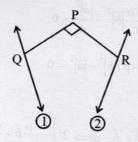
$$\therefore R(-\beta, \beta, -1)$$
 (say)

Direction ratios of PQ are $\lambda - \alpha$, $\lambda - \alpha$, $\lambda - 1$ and direction ratios of PR are $\lambda + \beta$, $\lambda - \beta$, $\lambda + 1$

 $\therefore PQ$ is perpendicular to L_1

$$\therefore \lambda - \alpha = 0 \Rightarrow \lambda = \alpha \qquad ...(iii)$$

...(i)



: PR is perpendicular to L2

$$\therefore -(\lambda + \beta) + \lambda - \beta = 0 \Rightarrow \beta = 0$$

 \therefore dr's of PQ are 0, 0, $\lambda - 1$

and dr's of PR are λ , λ , $\lambda + 1$

$$\therefore \angle QPR = 90^{\circ} \Rightarrow (\lambda - 1)(\lambda + 1) = 0 \Rightarrow \lambda = 1 \text{ or } -1$$

But for $\lambda = 1$, we get point Q itself

 \therefore we take $\lambda = -1$

6. (b, d) The given lines are

$$\ell_1: (3\hat{i} - \hat{j} + 4\hat{k}) + t(\hat{i} + 2\hat{j} + 2\hat{k})$$

$$\ell_2: (3\hat{i} + 3\hat{j} + 2\hat{k}) + s(2\hat{i} + 2\hat{j} + \hat{k})$$

Direction vector perpendicular to bo ℓ_1 and ℓ_2

$$\vec{b} = \ell_1 \times \ell_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{vmatrix} = -2\hat{i} + 3\hat{j} - 2\hat{k}$$

$$\therefore \quad \ell: \frac{x}{2} = \frac{y}{-3} = \frac{z}{2} = \lambda_{12} \quad 0 = 10.0 = 3.16$$

Any point on ℓ_1 is (t+3, 2t-1, 2t+4) and any point on ℓ is $(2\lambda, -3\lambda, 2\lambda)$

 \therefore Let intersection point of ℓ and ℓ_1 be P.

$$t+3=2\lambda$$
, $2t-1=-3\lambda$, $2t+4=2\lambda$

$$\Rightarrow t=-1, \lambda=1$$

$$P(2,-3,2)$$

Any point Q on ℓ_2 is (2s+3, 2s+3, s+2)

According to question $PQ = \sqrt{17}$

$$\Rightarrow$$
 $(2s+1)^2 + (2s+6)^2 + s^2 = 17$

$$\Rightarrow 9s^2 + 28s + 20 = 0 \Rightarrow s = -2, \frac{-10}{9}$$

$$\therefore$$
 Point Q can be $(-1, -1, 0)$ and $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$

7. (c) Let
$$L_1$$
: $\frac{x+11}{1} = \frac{y+21}{2} = \frac{z+29}{3} = \lambda$

and
$$L_2$$
: $\frac{x+16}{3} = \frac{y+11}{2} = \frac{z+4}{\gamma} = \mu$

$$x = \lambda - 11 = 3\mu - 16 \Rightarrow \lambda - 3\mu = -5$$

$$y=2\lambda-21=2\mu-11 \Rightarrow 2\lambda-2\mu=10$$

$$z = 3\lambda - 29 = \mu\gamma - 4 \Rightarrow 3\lambda - \mu\gamma = 25$$
 ...(ii)
...(iii)

from (i) & (ii)

 $\lambda = 10, \mu = 5$

Now from (iii)

$$3(10) - 5\gamma = 25 \qquad \therefore \gamma = 1$$

$$\therefore v = 1$$

So,
$$R_1 \equiv (-1, -1, 1)$$

Now,
$$OR_1 = -\hat{i} - \hat{j} + \hat{k}$$

$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix} = -4\hat{i} - (-8)\hat{j} - 4\hat{k}$$

$$\vec{n} = -4\hat{i} + 8\hat{j} + 4\hat{k} = -4(\hat{i} - 2\hat{i} + \hat{k})$$

$$\hat{n} = \pm \frac{4(\hat{i} - 2\hat{j} + \hat{k})}{4\sqrt{6}} = \pm \frac{(\hat{i} - 2\hat{j} + \hat{k})}{\sqrt{6}}$$

$$\overline{OR}.\hat{n} = \pm (-\hat{i} - \hat{j} + \hat{k}) \left(\frac{\hat{i} - 2\hat{j} + \hat{k})}{\sqrt{6}} \right)$$

$$=\pm\frac{2}{\sqrt{6}}=\pm\sqrt{\frac{4}{6}}=\pm\sqrt{\frac{2}{3}}$$

(A) \rightarrow t; (B) \rightarrow p,r; (C) \rightarrow q,s; (D) \rightarrow r

Let the line through origin be L: $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$ (i)

since line L intersects

$$L_1: \frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1}$$
(ii)

and
$$L_2$$
: $\frac{x-8/3}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$ (iii)

at P and Q.

: line L and L₁ coplaner.

$$\therefore \text{ Using } \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

we get
$$\begin{vmatrix} 2 & 1 & -1 \\ a & b & c \\ 1 & -2 & 1 \end{vmatrix} = 0 \Rightarrow a+3b+5c = 0$$
 ...(iv)

Also L and L₂ coplaner

and
$$\begin{vmatrix} 8/3 & -3 & 1 \\ a & b & c \\ 2 & -1 & 1 \end{vmatrix} = 0 \Rightarrow 3a + b - 5c = 0$$
 ...(v)

On solving (iv) and (v), we get

$$\frac{a}{-15-5} = \frac{b}{15+5} = \frac{c}{1-9}$$
 or $\frac{a}{5} = \frac{b}{-5} = \frac{c}{2}$

Hence equation (i) becomes $\frac{x}{5} = \frac{y}{-5} = \frac{z}{2} = \lambda$

Any point on L, $P(5\lambda, -5\lambda, 2\lambda)$ which lies on (ii) also

$$\therefore \frac{5\lambda - 2}{1} = \frac{-5\lambda - 1}{-2} = \frac{2\lambda + 1}{1} \Rightarrow \lambda = 1$$

Also Any point on L, $Q(5\lambda, -5\lambda, 2\lambda)$ which lies on (iii) also

$$\therefore \frac{5\lambda - 8/3}{3} = \frac{-5\lambda + 3}{-1} = \frac{2\lambda - 1}{1} \Rightarrow \lambda = 2/3$$

$$\therefore Q\left(\frac{10}{3}, \frac{-10}{3}, \frac{4}{3}\right)$$

Hence
$$d^2 = PQ^2 = \left(\frac{25}{9} + \frac{25}{9} + \frac{4}{9}\right) = 6$$

(B)
$$\tan^{-1}(x+3) - \tan^{-1}(x-3) = \tan^{-1}\frac{3}{4}$$

$$\left[\because \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}\right]$$

$$\Rightarrow \tan^{-1}\left(\frac{x+3-x+3}{1+x^2-9}\right) = \tan^{-1}\left(\frac{3}{4}\right), x^2-9>-1$$

$$\Rightarrow \frac{6}{x^2-8} = \frac{3}{4} \Rightarrow x^2 = 16 \text{ or } x = 4, -4$$

(C)
$$\vec{a} = \mu \vec{b} + 4\vec{c} \Rightarrow \vec{c} = \frac{\vec{a} - \mu \vec{b}}{4}$$

Then $(\vec{b} - \vec{a}) \cdot (\vec{b} + \vec{c}) = 0$
 $\Rightarrow (\vec{b} - \vec{a}) \cdot (\vec{b} + \frac{\vec{a} - \mu \vec{b}}{4}) = 0$
 $\Rightarrow (\vec{b} - \vec{a}) \cdot (\frac{4 - \mu}{4} \vec{b} + \frac{\vec{a}}{4}) = 0$

$$\Rightarrow \frac{4-\mu}{4} \left| \vec{b} \right|^2 - \frac{\left| \vec{a} \right|^2}{4} = 0$$

$$\Rightarrow (4-\mu) \left| \vec{b} \right|^2 - \left| \vec{a} \right|^2 = 0 \qquad \dots (i)$$

Also,

$$2|\vec{b} + \vec{c}| = |\vec{b} - \vec{a}| \Rightarrow 2^2 \left| \frac{4 - \mu}{4} \vec{b} + \frac{\vec{a}}{4} \right|^2 = |\vec{b} - \vec{a}|^2$$

$$\Rightarrow \ (4-\mu)^2 \left| \vec{b} \right|^2 + \left| \vec{a} \right|^2 = 4 \left| \vec{b} \right|^2 + 4 \left| \vec{a} \right|^2 \left[\because \ \vec{a}.\vec{b} = 0 \right]$$

$$\Rightarrow \left[(4-\mu)^2 - 4 \right] \left| \vec{b} \right|^2 = 3 \left| \vec{a} \right|^2$$
 ...(ii)

From (i) and (ii), we get

$$\frac{\left(4-\mu\right)^2 - 4}{4-\mu} = \frac{3}{1}$$

$$\Rightarrow \mu^2 - 8\mu + 12 = 12 - 3\mu \Rightarrow \mu^2 - 5\mu = 0$$

$$\Rightarrow \mu = 0 \text{ or } 5$$

(D)
$$I = \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{\sin(9x/2)}{\sin(x/2)} dx = \frac{2}{\pi} \times 2 \int_{0}^{\pi} \frac{\sin 9x/2}{\sin x/2} dx$$

[:: f(x) is even function]

Let
$$\frac{x}{2} = \theta \Rightarrow dx = 2d\theta$$

Also at $x = 0, \theta = 0$ and at $x = \pi, \theta = \pi/2$

$$\therefore I = \frac{8}{\pi} \int_0^{\pi/2} \frac{\sin 9\theta}{\sin \theta} d\theta$$

$$I = \frac{8}{\pi} \int_0^{\pi/2} \left[\frac{\sin 9\theta - \sin 7\theta}{\sin \theta} + \frac{(\sin 7\theta - \sin 5\theta)}{\sin \theta} + \frac{(\sin$$

$$\frac{(\sin 5\theta - \sin 3\theta)}{\sin \theta} + \frac{(\sin 3\theta - \sin \theta)}{\sin \theta} + \frac{\sin \theta}{\sin \theta} d\theta$$

$$= \frac{16}{\pi} \int_0^{\pi/2} (\cos 8\theta + \cos 6\theta + \cos 4\theta + \cos 2\theta) d\theta + \frac{8}{\pi} \int_0^{\pi/2} d\theta$$

$$= \frac{16}{\pi} \left[\frac{\sin 8\theta}{8} + \frac{\sin 6\theta}{6} + \frac{\sin 4\theta}{4} + \frac{\sin 2\theta}{2} \right]_0^{\pi/2} + \frac{8}{\pi} (\theta)_0^{\pi/2}$$

$$=0+\frac{8}{\pi}\left(\frac{\pi}{2}-0\right)=4$$

Topic-3: Equation of a Plane in Different Forms, Equation of a Plane Passing Through the Intersection of two Given Planes, Projection of a Line on a Plane

 (a) Equation of the plane passing through the intersection line of given planes is

$$(x+2y+3z-2) + \lambda(x-y+z-3) = 0$$

or
$$(1+\lambda)x + (2-\lambda)y + (3+\lambda)z + (-2-3\lambda) = 0$$

: Its distance from the point (3, 1, -1) is $\frac{2}{\sqrt{3}}$

$$\left| \frac{3(1+\lambda)+1(2-\lambda)-1(3+\lambda)+(-2-3\lambda)}{\sqrt{(1+\lambda)^2+(2-\lambda)^2+(3+\lambda)^2}} \right| = \frac{2}{\sqrt{3}}$$

$$\Rightarrow \left| \frac{-2\lambda}{\sqrt{3\lambda^2 + 4\lambda + 14}} \right| = \frac{2}{\sqrt{3}}$$

$$\Rightarrow 3\lambda^2 + 4\lambda + 14 = 3\lambda^2 \Rightarrow \lambda = -\frac{7}{2}$$

:. Required equation of plane is

$$(x+2y+3z-2)-\frac{7}{2}(x-y+z-3)=0$$

or
$$5x - 11y + z = 17$$

2. (a) Equation of st. line joining Q(2, 3, 5) and R(1, -1, 4) is

$$\frac{x-2}{-1} = \frac{y-3}{-4} = \frac{z-5}{1} = \lambda$$

Let
$$P(-\lambda+2, -4\lambda+3, -\lambda+5)$$

Since P also lies on 5x - 4y - z = 1

$$\therefore -5\lambda + 10 + 16\lambda - 12 + \lambda - 5 = 1$$

$$\Rightarrow 12\lambda = 8 \Rightarrow \lambda = \frac{2}{3} \qquad \therefore P = \left(\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$$

Now let another point S on QR be

$$\left(-\mu+2,-4\mu+3,-\mu+5\right)$$
 will be a small result of

Since S is the foot of perpendicular drawn from T(2, 1, 4) to QR, where dr's of ST are μ , $4\mu - 2$, $\mu - 1$ and dr's of QR are -1, -4, -1

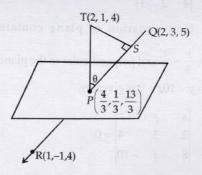
$$\therefore -\mu - 16\mu + 8 - \mu + 1 = 0 \implies 18\mu = 9 \implies \mu = \frac{1}{2}$$

$$\therefore S = \left(\frac{3}{2}, 1, \frac{9}{2}\right)$$

Distance between P and S

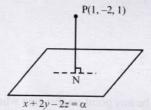
$$= \sqrt{\left(\frac{4}{3} - \frac{3}{2}\right)^2 + \left(\frac{1}{3} - 1\right)^2 + \left(\frac{13}{3} - \frac{9}{2}\right)^2}$$

$$=\sqrt{\frac{1}{36} + \frac{4}{9} + \frac{1}{36}} = \frac{1}{\sqrt{2}}$$



3. (a) Since perpendicular distance of $x + 2y - 2z - \alpha = 0$ from the point (1, -2, 1) is 5

$$\therefore \left| \frac{1-4-2-\alpha}{3} \right| = 5$$



$$\Rightarrow \frac{-5-\alpha}{3} = 5 \text{ or } -5$$

$$\Rightarrow \alpha = -20 \text{ or } 10$$

But
$$\alpha > 0 \Rightarrow \alpha = 10$$

$$\therefore$$
 Equation of plane: $x + 2y - 2z - 10 = 0$

We know that foot of perpendicular from point (x, y, z) to the plane ax + by + cz + d = 0 is given by

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} = \frac{-(ax_1 + by_1 + cz_1 + d)}{(a^2 + b^2 + c^2)}$$

$$\therefore \frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{-2} = \frac{-(1-4-2-10)}{9} = \frac{5}{3}$$

$$\Rightarrow x = \frac{8}{3}, y = \frac{4}{3}, z = -\frac{7}{3}$$

$$\therefore \quad \text{Foot of } \perp^r \equiv \left(\frac{8}{3}, \frac{4}{3}, \frac{-7}{3}\right)$$

4. (c) Equation of plane containing two lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and

$$\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$$
 is given by

$$\begin{vmatrix} x & y & z \\ 3 & 4 & 2 \\ 4 & 2 & 3 \end{vmatrix} = 0 \implies 8x - y - 10z = 0$$

Now equation of plane containing the line

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$$
 and perpendicular to the plane

$$8x - y - 10z = 0$$
 is given by,

$$\begin{vmatrix} x & y & z \\ 2 & 3 & 4 \\ 8 & -1 & -10 \end{vmatrix} = 0$$

$$\Rightarrow -26x + 52y - 26z = 0$$
 or $x - 2y + z = 0$

(c) Since line makes equal angle with coordinate axes and which has positive direction cosines

$$\therefore \quad \text{D-c's} = \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 D·r's=1, 1, 1

$$\frac{x-2}{1} = \frac{y+1}{1} = \frac{z-2}{1} = \lambda$$

 $\therefore Q(\lambda + 2, \lambda - 1, \lambda + 2)$ be any point on this line where it meets the plane 2x + y + z = 9

$$\Rightarrow$$
 2($\lambda + 2$) + $\lambda - 1 + \lambda + 2 = 9 \Rightarrow \lambda = 1$

: Q has coordintes (3, 0, 3)

$$PQ = \sqrt{(2-3)^2 + (-1-0)^2 + (2-3)^2} = \sqrt{3}$$

6. (a) :
$$\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$$

= $(1 - 3\mu)\hat{i} + (-1 + \mu)\hat{j} + (2 + 5\mu)\hat{k}$

Let coordinates of Q be $(-3\mu+1, \mu-1, 5\mu+2)$

:. d.r's of
$$\overrightarrow{PQ} = -3\mu - 2$$
, $\mu - 3$, $5\mu - 4$

Given that \overrightarrow{PQ} is parallel to the plane x - 4y + 3z = 1

$$\therefore 1.(-3\mu-2)-4.(\mu-3)+3.(5\mu-4)=0$$

$$\Rightarrow$$
 $8\mu = 2$ or $\mu = \frac{1}{4}$

7. (d) We know that the equation of plane through the point (1, -2, 1) and perpendicular to the planes

$$2x-2y+z=0$$
 and $x-y+2z=4$ is

$$\begin{vmatrix} x-1 & y+2 & z-1 \\ 2 & -2 & 1 \\ 1 & -1 & 2 \end{vmatrix} = 0 \implies x+y+1=0$$

It's distance from the point (1, 2, 2) is

$$\left|\frac{1+2+1}{\sqrt{2}}\right| = 2\sqrt{2}.$$

8. (d) Let $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ be the eqⁿ of variable plane which meets the axes at A(a, 0, 0), B(0, b, 0) and C(0, 0, c).

$$\therefore$$
 Centroid of $\triangle ABC$ is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$

$$\Rightarrow x = \frac{a}{3}, y = \frac{b}{3}, z = \frac{c}{3}$$

putting these values in

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k \implies \frac{9}{a^2} + \frac{9}{b^2} + \frac{9}{c^2} = k$$

$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{z^2} = \frac{k}{9} \qquad ...(i)$$

Also given that the distance of plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ from (0, 0, 0) is 1 unit.

$$\Rightarrow \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} = 1 \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1$$

From (i) we get $\frac{k}{0} = 1$ i.e. k = 9

9. (a) Since the line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x-4y+z=7, then the point (4, 2, k) on line also lie on the given plane and hence

$$2 \times 4 - 4 \times 2 + k = 7 \implies k = 7$$

10. (5) Given that $(\overrightarrow{OP} \times \overrightarrow{OQ}).\overrightarrow{OR} = 0$

$$\begin{vmatrix} \frac{\alpha - 1}{\alpha} & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \\ 1 & 1 & \frac{1}{2} \end{vmatrix} = 0$$

$$\Rightarrow \frac{\alpha-1}{\alpha} \left(\frac{\beta-1}{2\beta} - 1 \right) - \left(\frac{1}{2} - 1 \right) + 1 \left(1 - \frac{\beta-1}{\beta} \right) = 0$$

$$\frac{\alpha - 1}{\alpha} \left(\frac{-\beta - 1}{2\beta} \right) + \frac{1}{2} + \frac{1}{\beta} = 0$$

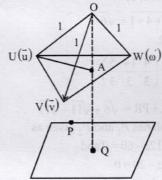
$$\Rightarrow \frac{\beta + 2}{2\beta}$$

$$=\frac{\alpha\beta+\alpha-\beta-1}{2\alpha\beta}$$

$$\Rightarrow \alpha\beta + 2\alpha = \alpha\beta + \alpha - \beta - 1 \Rightarrow \alpha + \beta + 1 = 0$$

Since,
$$(\alpha, \beta, 2)$$
 lies on plane $3x + 3y - z + l = 0$
 $\Rightarrow 3(\alpha + \beta) - 2 + l = 0$...(ii)
 $\Rightarrow -3 - 2 + l = 0 \Rightarrow l = 5$

11. (45)



Given, $|\vec{\mathbf{u}} - \vec{\mathbf{v}}| = |\vec{\mathbf{v}} - \vec{\mathbf{w}}| = |\vec{\mathbf{w}} - \vec{\mathbf{u}}|$

So, ΔUVW is one equilateral triangle

Given that distances of points U, V, W from plane

$$P = \frac{7}{2} \Rightarrow AQ = \frac{7}{2}$$

Distance of plane P from origin
$$= \left| \frac{0+0+0-16}{\sqrt{3+4+9}} \right| = 4 = OQ$$

$$\therefore$$
 OA = OQ - AQ = 4 - $\frac{7}{2}$ = $\frac{1}{2}$

In
$$\triangle OAU$$
, $UA = \sqrt{OV^2 - OA^2} = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2} = R$

In AUVW, is circumcenter

$$US = R \cos 30^{\circ} \Rightarrow UV = 2 R \cos 30^{\circ} = \frac{3}{2}$$

$$\therefore \text{ Ar } \Delta \text{UVW} = \frac{\sqrt{3}}{4} \left(\frac{3}{2}\right)^2 = \frac{9\sqrt{3}}{16}$$

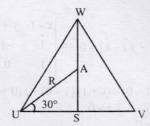
Volume of tetrahedron with coteminous edges

$$\vec{u}, \vec{v}, \vec{w} = \frac{1}{3} \text{ (Ar } \Delta UVW) \times \text{OA}$$

$$= \frac{1}{3} \times \frac{9\sqrt{3}}{16} \times \frac{1}{2} = \frac{3\sqrt{3}}{32}$$

Volume of parallelopiped:

$$V = 6 \times \text{volume of tetrahedron} = \frac{6 \times 3\sqrt{3}}{32} = \frac{9\sqrt{3}}{16}$$



Now,
$$\frac{80}{\sqrt{3}}$$
 V = $\frac{80}{\sqrt{3}} \times \frac{9\sqrt{3}}{16} = 45$

(8) Let coordinates of P are (a, b, c).

So, coordinates of Q are (0, 0, c) and coordinates of R are

Given that, PQ is perpendicular to the plane x + y = 3. So, PQ is parallel to the normal of given plane

i.e. $(a\hat{i} + b\hat{j})$ is parallel to $(\hat{i} + \hat{j})$ on comparing

As mid-point of PQ lies in the plane x + y = 3, so

$$\frac{a}{2} + \frac{b}{2} = 3$$

 \Rightarrow a+b=6 \Rightarrow a=3=b

Therefore, distance of P from the x-axis

$$=\sqrt{b^2+c^2}=5$$
 (given)

$$\Rightarrow b^2 + c^2 = 25$$

$$\Rightarrow$$
 $c^2 = 25 - 9 = 16$

$$\Rightarrow$$
 c= ± 4

Hence, PR = |2c| = 8

(6) The equation of plane containing the given lines:

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0 \Rightarrow x-2y+z=0$$

 \therefore Distance between x - 2y + z = 0 and Ax - 2y + z = d

= Perpendicular distance between parallel planes (:A=1)

$$=\frac{|d|}{\sqrt{6}}=\sqrt{6} \implies |d|=6.$$

(0.75)

Equation of plane containing vectors \hat{i} and $\hat{i} + \hat{j}$ is

$$\begin{bmatrix} \vec{r} - \hat{i} & \hat{i} & \hat{i} + \hat{j} \end{bmatrix} = 0 \implies \begin{vmatrix} x - 1 & y & z \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 0$$

$$\Rightarrow z = 0$$
(i)

Similarly, equation of plane containing vectors $\hat{i} - \hat{j}$ and $\hat{i} + \hat{k}$ is

$$[\hat{r} - (\hat{i} - \hat{j}) \ \hat{i} - \hat{j} \ \hat{i} + \hat{k}] = 0 \Rightarrow \begin{vmatrix} x - 1 & y + 1 & z \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)(-1-0) - (y+1)(1-0) + z(0+1) = 0$$

\Rightarrow x + 1 - y - 1 + z = 0
\Rightarrow x - y + z = 0

Let
$$\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$$

Since \vec{a} is parallel to (i) and (ii)

$$\therefore c = 0$$
 and $a + b - c = 0 \Rightarrow a = -b$

$$\therefore$$
 a vector in direction of \vec{a} is $\hat{i} - \hat{j}$

Let θ is the angle between \vec{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ then

$$\cos\theta = \pm \frac{1.1 + (-1)(-2)}{\sqrt{1+1}\sqrt{1+4+4}} = \pm \frac{3}{\sqrt{2}.3}$$

$$\Rightarrow \cos \theta = \pm \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \pi/4 \text{ or } 3\pi/4$$

16. Unit vector perpendicular to plane,
$$\hat{n} = \pm \frac{\overrightarrow{PQ} \times \overrightarrow{PR}}{|\overrightarrow{PQ} \times \overrightarrow{PR}|}$$

$$\overrightarrow{PQ} = \hat{i} + \hat{j} - 3\hat{k}$$
; $\overrightarrow{PR} = -\hat{i} + 3\hat{j} - \hat{k}$

$$\therefore \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -3 \\ -1 & 3 & -1 \end{vmatrix}$$

$$= (-1+9)\hat{i} - (-1-3)\hat{j} + (3+1)\hat{k} = 8\hat{i} + 4\hat{j} + 4\hat{k}$$
$$\left| \overrightarrow{PQ} \times \overrightarrow{PR} \right| = \sqrt{64+16+16} = \sqrt{96} = 4\sqrt{6}$$

$$\hat{n} = \pm \left(\frac{8\hat{i} + 4\hat{j} + 4\hat{k}}{4\sqrt{6}} \right) = \pm \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \right)$$

17. (a, b, c) Let
$$X = (x, y)$$
 S: $\{((x-1)^2 + (y-2)^2 + (z-3)^2) - ((x-4)^2 + (y-2)^2 + (z-7)^2) = 50\}$

$$\Rightarrow S: \{6x + 8z - 105 = 0\}$$

Similarly
$$T = \{6x + 8z - 5 = 0\}$$

Both S and T represents the equation of plane and parallel to each other.

Other Distance between plane =
$$\left| \frac{105 - 5}{\sqrt{36 + 64}} \right| = 10$$
 unit

So. S will contain a triangle of area 1. So (a) is correct. Hence (b) and (c) are correct but (d) is incorrect.

18. (a, c) Equation of line parallel to
$$\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$$

through P(1, 3, 2) is
$$\frac{x-1}{1} = \frac{y-3}{2} = \frac{z-2}{1} = \lambda$$
 (let)

Now, putting any point
$$(\lambda + 1, 2\lambda + 3, \lambda + 2)$$
 in plane L_1 ,

$$\lambda + 1 - 2\lambda - 3 + 3(\lambda + 2) = 6$$

$$\Rightarrow \lambda = 1$$

Equation of line through Q(2, 5, 3) perpendicular to L_1

is
$$\frac{x-2}{1} = \frac{y-5}{-1} = \frac{z-3}{3} = \mu$$
 (Let)

Putting any point
$$(\mu + 2, -\mu + 5, 3\mu + 3)$$
 in plane L_2
 $\Rightarrow \mu = -1$

(a)
$$PQ = \sqrt{1+4+1} = \sqrt{6}$$

(b)
$$R(1, 6, 0)$$

(c) Centroid
$$\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$$

(d) PQ + QR + PR =
$$\sqrt{6} + \sqrt{11} + \sqrt{13}$$

19. (a, b) We have planes P_1 and P_2 given as

$$P_1: 10x + 15y + 12z - 60 = 0$$
 and

$$P_2: -2x + 5y + 4z - 20 = 0$$

$$S: (10x+15y+12z-60)(-2x+5y+4z-20) = 0$$

Now we will obtain a general point of each line and we will solve it with S. If we get more than one value of variable λ , then the line can be the edge of given tetrahedron.

(a) From option we have
$$\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{5}$$

Let
$$\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{5} = \lambda$$

So, point is
$$(1, 1, 5\lambda + 1)$$

So,
$$(60\lambda - 23)(20\lambda - 17) = 0$$

$$\lambda = \frac{23}{60} \text{ and } \frac{17}{20}$$

So, it can be the edge of tetrahedron.

(b) Similarly for option (b)

point is
$$(-5\lambda + 6, 2\lambda, 3\lambda)$$

So,
$$(16\lambda)(32\lambda - 32) = 0$$

$$\Rightarrow \lambda = 0$$
 and 1

So, it can be the edge of tetrahedron.

(c) Similarly for option (c)

Point is
$$(-2\lambda, 5\lambda + 4, 4\lambda)$$

So,
$$(103\lambda)(45\lambda) = 0$$

$$\lambda = 0$$
 only

So, it cannot be the edge of tetrahedron.

Three Dimensional Geometry

(d) Similarly for option (d) Point is $(\lambda, -2\lambda + 4, 3\lambda)$

$$\Rightarrow$$
 $(16\lambda)(-2\lambda)=0$

$$\Rightarrow \lambda = 0$$
 only

Hence, it cannot be the edge of tetrahedron.

20. (a, b, c) We are given that equation of plane is

$$\vec{r} = -(t+p)\hat{i} + t\hat{j} + (1+p)\hat{k}$$

This can be written as

$$\vec{r} = \hat{k} + t(-\hat{i} + \hat{j}) + p(-\hat{i} + \hat{k})$$

Now, equation of plane in standard form is

$$\left[\vec{r} - \hat{k} - \hat{i} + \hat{j} - \hat{i} + \hat{k}\right] = 0$$

$$\therefore x+y+z=1 \qquad ...(i$$

Coordinate of Q = (10, 15, 20)

Coordinate of $S = (\alpha, \beta, \gamma)$

$$\therefore \frac{\alpha - 10}{1} = \frac{\beta - 15}{1} = \frac{\gamma - 20}{1} = \frac{-2(10 + 15 + 20 - 1)}{3}$$

$$\alpha - 10 = \beta - 15 = \gamma - 20 = -\frac{88}{3}$$

$$\alpha = -\frac{58}{3}, \beta = -\frac{43}{3}, \gamma = -\frac{28}{3}$$

$$3(\alpha+\beta) = -101, 3(\beta+\gamma) = -71$$

3(\gamma+\alpha) = -86 and 3(\alpha+\beta+\gamma) = -129

21. (a, b) The point of intersection of L_1 and L_2 is (1, 0, 1)

: Line L passes through the point of intersection (1,0,1) of L_1 and L_2

$$\therefore \frac{1-\alpha}{\ell} = -\frac{1}{m} = \frac{1-\gamma}{-2}$$
(i)

: Line L_1 bisects the acute angle between the lines L_1 and L_2 , then

$$\vec{r} = \hat{i} + \hat{k} + \lambda \left(\frac{\hat{i} - \hat{j} + 3\hat{k} - 3\hat{i} - \hat{j} + \hat{k}}{\sqrt{11}} \right)$$

$$\Rightarrow \vec{r} = \hat{i} + \hat{k} + t(\hat{i} + \hat{j} - 2\hat{k})$$

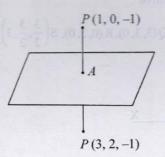
$$\Rightarrow \frac{\ell}{1} = \frac{m}{1} = \frac{-2}{-2} \Rightarrow \ell = m = 1$$

From (i),
$$\frac{1-\alpha}{1} = -1 \Rightarrow \alpha = 2$$

and
$$\frac{1-\gamma}{-2} = -1 \Rightarrow \gamma = -1$$

$$\alpha - \gamma = 2 - (-1) = 3$$
 and $l + m = 1 + 1 = 2$

22. (a, b, c)



Mid-point of PQ = A(2, 1, -1)

D.r's of PQ = 2, 2, 0

Since PQ perpendicular to plane and mid-point lies on plane
∴ Equation of plane:

$$2(x-2)+2(y-1)+0(z+1)=0$$

$$\Rightarrow x-2+y-1=0$$

 $\Rightarrow x + y = 3$ comparing with $\alpha x + \beta y + \gamma z = \delta$,

we get
$$\alpha = 1$$
, $\beta = 1$, $\gamma = 0$ and $\delta = 3$.

: option (a), (b), (c) are true.

23. (c, d)

(a) Direction vector of line of intersection of two planes will be given by $\vec{n}_1 \times \vec{n}_2$.

$$\therefore \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 2 & 1 \end{vmatrix} = 3\hat{i} - 3\hat{j} + 3\hat{k}$$

.. dr's of line of intersection of P_1 and P_2 are 1, -1, 1.. (a) is not correct.

(b) The standard form of given line as

$$\frac{x-\frac{4}{3}}{3} = \frac{y-\frac{1}{3}}{-3} = \frac{z}{3}$$

$$\therefore 1 \times 3 + (-1)(-3) + 1(3) = 9 \neq 0$$

∴ This line is not perpendicular to line of intersection∴ (b) is not correct.

(c) Let θ be the angle between P_1 and P_2 then

$$\cos \theta = \left| \frac{2 \times 1 + 1 \times 2 + (-1) \times 1}{\sqrt{6} \sqrt{6}} \right| = \frac{3}{6} = \frac{1}{2}$$

Hence (c) is correct.

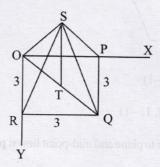
(d) Equation of plane P_3 : 1(x-4)-1(y-2)+1(z+2)=0 $\Rightarrow x-y+z=0$

Distance of (2, 1, 1) from
$$P_3 = \frac{2-1+1}{\sqrt{1+1+1}} = \frac{2}{\sqrt{3}}$$

.: (d) is correct.

24. (b, c, d) According to question the coordinates of vertices of pyramid OPQRS will be

$$O(0,0,0), P(3,0,0), Q(3,3,0), R(0,3,0), S(\frac{3}{2},\frac{3}{2},3)$$



dr's of OQ = 1, 1, 0

dr's of OS = 1, 1, 2

: acute angle between OQ and OS

$$=\cos^{-1}\left(\frac{2}{\sqrt{2}\times\sqrt{6}}\right)=\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)\neq\frac{\pi}{3}$$

: (a) is not correct

Eqn of plane OQS =
$$\begin{vmatrix} x & y & z \\ 1 & 1 & 0 \\ 1 & 1 & 2 \end{vmatrix} = 0$$

$$\Rightarrow$$
 2x - 2y = 0 or x - y = 0

: (b) is correct.

length of perpendicular from P (3, 0, 0) to plane x - y = 0 is =

$$\left| \frac{3-0}{\sqrt{2}} \right| = \frac{3}{\sqrt{2}}$$

: (c) is correct.

Eqn of RS:
$$\frac{x}{\frac{3}{2}} = \frac{y-3}{\frac{-3}{2}} = \frac{z}{3}$$
 or $\frac{x}{1} = \frac{y-3}{-1} = \frac{z}{2} = \lambda$

:. Any point ON RS is N $(\lambda, -\lambda + 3, 2\lambda)$

Since ON is perpendicular to RS,

$$: ON \perp RS \Rightarrow 1 \times \lambda - 1(-\lambda + 3) + 2 \times 2\lambda = 0$$

$$\Rightarrow \lambda = \frac{1}{2} \Rightarrow N\left(\frac{1}{2}, \frac{5}{2}, 1\right)$$

$$\therefore ON = \sqrt{\frac{1}{4} + \frac{25}{4} + 1} = \sqrt{\frac{15}{2}}$$

- : (d) is correct
- 25. (a, b) : All the points on L are at a constant distance from P_1 and P_2 that means L is parallel to both P_1 and P_2

$$\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & -1 & 1 \end{vmatrix} = \hat{i} - 3\hat{j} - 5\hat{k}$$

$$\therefore L: \frac{x}{1} = \frac{y}{-3} = \frac{z}{-5} = \lambda \text{ (say)}$$

 \therefore Any point on line L is $(\lambda, -3\lambda, -5\lambda)$

Equation of line perpendicular to P_1 drawn from any point on L is

$$\frac{x-\lambda}{1} = \frac{y+3\lambda}{2} = \frac{z+5\lambda}{-1} = \mu$$

 $\therefore M(\mu+\lambda,2\mu-3\lambda,-\mu-5\lambda)$

But M lies on P_1 so, it satisfy the eqn. of P_1 .

$$\therefore \quad \mu + \lambda + 4\mu - 6\lambda + \mu + 5\lambda + 1 = 0 \Rightarrow \quad \mu = \frac{-1}{6}$$

$$\therefore M\left(\lambda - \frac{1}{6}, -3\lambda - \frac{1}{3}, -5\lambda + \frac{1}{6}\right)$$

For locus of M,

$$x = \lambda - \frac{1}{6}, y = -3\lambda - \frac{1}{3}, z = 5\lambda + \frac{1}{6}$$

$$\Rightarrow \frac{x+1/6}{1} = \frac{y+1/3}{-3} = \frac{z-1/6}{-5} = \lambda$$

On checking the given point, we find $\left(0, \frac{-5}{6}, \frac{-2}{3}\right)$ and

$$\left(\frac{-1}{6}, \frac{-1}{3}, \frac{1}{6}\right)$$
 satisfy the above eqn.

26. (b, d) P_3 : $(x+z-1) + \lambda y = 0 \Rightarrow x + \lambda y + z - 1 = 0$ Distance of point (0, 1, 0) from P_3 :

$$\left| \frac{\lambda - 1}{\sqrt{2 + \lambda^2}} \right| = 1 \Rightarrow \lambda^2 - 2\lambda + 1 = \lambda^2 + 2 \Rightarrow \lambda = \frac{-1}{2}$$

Distance of point (α, β, γ) from P_3 :

$$\left| \frac{\alpha + \lambda \beta + \gamma - 1}{\sqrt{2 + \lambda^2}} \right| = 2 \Rightarrow \frac{\alpha - \frac{1}{2}\beta + \gamma - 1}{\frac{3}{2}} = \pm 2$$

$$\Rightarrow \alpha - \frac{1}{2}\beta + \gamma - 1 = \pm 3 \Rightarrow 2\alpha - \beta + 2\gamma - 2 = \pm 6$$

$$\Rightarrow 2\alpha - \beta + 2\gamma - 8 = 0 \text{ or } 2\alpha - \beta + 2\gamma + 4 = 0$$

27. (a, d) Given that L_1 and L_2 are coplanar, therefore

$$\begin{vmatrix} 5 - \alpha & 0 & 0 \\ 0 & 3 - \alpha & -2 \\ 0 & -1 & 2 - \alpha \end{vmatrix} = 0$$

$$\Rightarrow (5-\alpha)[6-5\alpha+\alpha^2-2]=0$$

$$\Rightarrow (5-\alpha)(\alpha-1)(\alpha-4)=0 \Rightarrow \alpha=1,4,5.$$

28. (b, c) Given that lines are coplanar.

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 \\ 2 & k & 2 \\ 5 & 2 & k \end{vmatrix} = 0 \Rightarrow k = \pm 2$$

For k = 2, equation of the plane is given by

$$\begin{vmatrix} x-1 & y+1 & z \\ 2 & 2 & 2 \\ 5 & 2 & 2 \end{vmatrix} = 0 \Rightarrow y-z+1=0$$

For k = -2, equation of the plane is given by

$$\begin{vmatrix} x-1 & y+1 & z \\ 2 & -2 & 2 \\ 5 & 2 & -2 \end{vmatrix} = 0 \Rightarrow y+z+1=0$$

29. (b, d) Normal vector of plane P_1 is

$$\vec{n}_1 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & 3 \\ 0 & 4 & -3 \end{vmatrix} = -18\hat{i}$$

Normal vector of plane P_2 is

$$\vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -1 \\ 3 & 3 & 0 \end{vmatrix} = 3\hat{i} - 3\hat{j} - 3\hat{k}$$

$$\vec{A}$$
 is parallel to $\pm (\hat{n}_1 \times \hat{n}_2) = \pm (-54\hat{j} + 54\hat{k})$

Now, angle between \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is given by

$$\cos \theta = \pm \frac{(-54\hat{j} + 54\hat{k}).(2\hat{i} + \hat{j} - 2\hat{k})}{54\sqrt{2}.3} = \pm \frac{1}{\sqrt{2}}$$

$$\theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$$

- (b) For largest possible distance between plane H₀ and l₂, the line l2 must be parallel to plane Ho.
 - :. Ho will be the plane containing the line l1 and parallel to l2

Normal vector
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \hat{i} - \hat{k}$$

$$\therefore \underset{\mathbf{H}_0}{\mathbf{H}_0} : \mathbf{x} - \mathbf{z} = \mathbf{c}/(0, 0, 0) \Rightarrow \mathbf{c} = 0$$

$$\begin{array}{c} |I \quad 0 \quad 1| \\ \therefore H_o : x - z = c/(0, 0, 0) \Rightarrow c = 0 \\ \therefore H_o : x - z = 0 \\ \text{(P) Distance of point } (0, 1, -1) \text{ from } H_o. \\ d(H_o) = \left| \frac{0 - (1)}{\sqrt{2}} \right| = \frac{1}{\sqrt{2}} \end{aligned}$$

(Q) The distance of the point (0, 1, 2) from $H_0 = \left| \frac{0-2}{\sqrt{2}} \right| = \sqrt{2}$

- (R) The distance of origin from $H_0 = \left| \frac{0}{\sqrt{2}} \right| = 0$
- Point of intersection of planes y = z, x = 1 and H_0 is (1, 1, 1). Distance = $\sqrt{1+1+1} = \sqrt{3}$.
- 31. (a) Let any point on L_1 is $(2\lambda + 1, -\lambda, \lambda 3)$

and that on L₂ is
$$(\mu + 4, \mu - 3, 2\mu - 3)$$

$$2\lambda + 1 = \mu + 4, -\lambda = \mu - 3, \lambda - 3 = 2\mu - 3$$

$$\Rightarrow \lambda = 2, \mu = 1$$

Intersection point of L_1 and L_2 is (5, -2, -1)Equation of plane passing through, (5, -2, -1) and perpendicular to P1 & P2 is given by

$$\begin{vmatrix} x-5 & y+2 & z+1 \\ 7 & 1 & 2 \\ 3 & 5 & -6 \end{vmatrix} = 0$$

$$\Rightarrow x-3y-2z=13$$

$$\therefore$$
 a=1, b=-3, c=-2, d=13

or
$$(P) \to (3)(Q) \to (2)(R) \to (4)(S) \to (1)$$

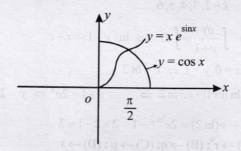
- 32. $A \rightarrow p$; $B \rightarrow q$, s; $C \rightarrow q$, r, s, t; $D \rightarrow r$
 - (A) Let us consider two functions

$$y = xe^{\sin x}$$
 and $y = \cos x$

The range of
$$y = xe^{\sin x}$$
 is $\left(0, \frac{\pi e}{2}\right)$ and

$$\frac{dy}{dx} = e^{\sin x} + xe^{\sin x}\cos x \ge 0$$
, for $x \leftarrow \left(0, \frac{\pi}{2}\right)$, so, it

is an increasing function on $\left(0, \frac{\pi}{2}\right)$. Their graph are as shown in the figure below:



Clearly the two curves meet only at one point, therefore the given equation has only one solution in $\left(0, \frac{\pi}{2}\right)$.

(B) Since given planes intersect in a straight-line

$$\begin{vmatrix} k & 4 & 1 \\ 4 & k & 2 \\ 2 & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow k(k-4)-4(4-4)+1(8-2k)=0$$

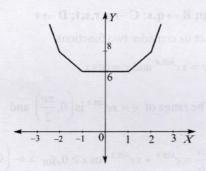
$$\Rightarrow k^2 - 6k + 8 = 0 \Rightarrow (k-2)(k-4) = 0$$

$$\Rightarrow k = 2 \text{ or } 4$$

(C) We have
$$f(x) = |x-1| + |x-2| + |x+1| + |x+2|$$

$$\begin{cases}
-4x & , & x \le -2 \\
-2x+4 & , & -2 < x \le -1 \\
6 & , & -1 < x \le 1 \\
2x+4 & , & 1 < x \le 2 \\
4x & , & x \ge 2
\end{cases} \quad \left[\because |x-1| \begin{cases} x-1, \text{ is } x \ge 1 \\ -(x-1) \text{ is } x < 1 \end{cases} \right]$$

The graph of the above function is as given below



Clearly, from graph, $f(x) \ge 6$

$$\Rightarrow 4k \ge 6 \Rightarrow k \ge \frac{3}{2}$$

$$k=2,3,4,5,6,...$$

(D)
$$\int \frac{dy}{y+1} = \int dx \implies \ln|y+1| = x + c$$

At
$$x = 0$$
, $y = 1 \implies c = \ln 2$

$$\therefore \ln |y+1| = x + \ln 2 \implies y+1 = 2e^x \implies y = 2e^x - 1$$

$$v(\ln 2) = 2e^{\ln 2} - 1 = 2 \times 2 - 1 = 3$$

33. (A) \rightarrow r; (B) \rightarrow q; (C) \rightarrow p; (D) \rightarrow s

The determinant of the coefficient matrix of given equation, as

$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = -(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$

$$= -\frac{1}{2}(a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2]$$

(A) When $a+b+c\neq 0$ and

$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$

$$\Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

$$\Rightarrow a = b = c \quad (but \neq 0 \text{ as } a + b + c \neq 0)$$

This equation represent identical planes.

(B) When a+b+c=0 and

$$a^2 + b^2 + c^2 - ab - bc - ca \neq 0$$

 $\Rightarrow \Delta = 0$ and a, b, c are not all equal.

:. All equations are not identical but have infinite many solutions.

... (ii)

 $\therefore ax + by = (a+b)z$

... (i) (using a+b+c=0)

and
$$bx + cy = (b+c)z$$

On Solving eqn. (i) and (ii) we, get

$$\Rightarrow$$
 $(b^2 - ac)y = (b^2 - ac)z \Rightarrow y = z$

$$\Rightarrow ax + by + cy = 0 \Rightarrow ax = ay \Rightarrow x = y$$

$$\Rightarrow x = y = z$$

 \therefore The equations represent the line x = y = z

(C) When $a+b+c \neq 0$ and

$$a^2 + b^2 + c^2 - ab - bc - ca \neq 0$$

 $\Rightarrow \Delta \neq 0 \Rightarrow$ Equations have only trivial solution

i.e.,
$$x = y = z = 0$$

: the equations represents the three planes meeting at a single point namely origin.

(D) When a+b+c=0 and

$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$

$$\Rightarrow a = b = c \text{ and } \Delta = 0 \Rightarrow a = b = c = 0$$

 \Rightarrow All equations are satisfied by all x, y, and z.

 \Rightarrow The equations represent the whole of the three dimensional space (all points in 3-D)

34. $(A) \rightarrow (s); (B) \rightarrow (p); (C) \rightarrow (q), (r); (D) \rightarrow (s)$

(A)
$$x + y = |a|$$
$$ax - y = 1$$

$$\frac{(1+a)x}{(1+a)} = 1+|a|$$

$$\Rightarrow x = \frac{1+|a|}{a+1} \Rightarrow y = \frac{a|a|-1}{a+1}$$

 \therefore Rays intersect each other in I quad i.e. x > 0. $y \ge 0$ $\Rightarrow a + 1 > 0$ and $a|a| - 1 > 0 \Rightarrow a > 1$

$$\therefore a_0 = 1 (A) \rightarrow (s)$$

(B) Given that (α, β, γ) lies on the plane x + y + z = 2 $\Rightarrow \alpha + \beta + \gamma = 2$

Also
$$\hat{k} \times (\hat{k} \times \vec{a}) = (\hat{k}.\hat{a})\hat{k} - (\hat{k}.\hat{k})\vec{a}$$

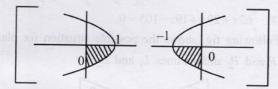
$$\Rightarrow \gamma \hat{k} - \alpha \hat{i} - \beta \hat{j} - \gamma \hat{k} = 0 \Rightarrow \alpha \hat{i} + \beta \hat{j} = 0$$

$$\Rightarrow \alpha = 0 = \beta \Rightarrow \gamma = 2 \qquad (\because \alpha + \beta + \gamma = 2)$$
(B) \rightarrow (p)

(C)
$$\left| \int_0^1 (1 - y^2) dy \right| + \left| \int_0^1 (y^2 - 1) dy \right|$$

$$= 2\left|\int_0^1 (1 - y^2) dy\right| = \frac{4}{3}$$

 $y = \sqrt{1-x}$, $\Rightarrow y^2 = -(x-1)$ and $y = \sqrt{1+x}$ $\Rightarrow y^2 = (x+1)$ It is clear from above figure that



$$\left| \int_0^1 \sqrt{1 - x} \, dx \right| + \left| \int_{-1}^0 \sqrt{1 + x} \, dx \right| = 2 \int_0^1 \sqrt{1 - x} \, dx$$

$$=2\int_0^1 \sqrt{x} \, dx \, \left[\operatorname{Using} \int_0^a f(x) dx = \int_0^a f(a-x) dx \right]$$

$$= \left[2.\frac{2}{3}x^{3/2}\right]_0^1 = \frac{4}{3}, \quad (C) \to (r) \text{ and } (q)$$

(D) Given that $\sin A \sin B \sin C + \cos A \cos B = 1$

We know that $\sin A \sin B \sin C + \cos A \cos B \le \sin A \sin B + \cos A \cos B = \cos (A - B)$

$$\Rightarrow \cos(A - B) \ge 1 \Rightarrow \cos(A - B) = 1$$

$$\Rightarrow A - B = 0 \Rightarrow A = B$$

:. Given relation becomes $\sin^2 A \sin C + \cos^2 A = 1$ $\Rightarrow \sin C = 1$.

$$(D) \rightarrow (s)$$

35. (b) Vector in the direction of $L_1 = \vec{b_1} = 3\hat{i} + \hat{j} + 2\hat{k}$

Vector in the direction of $L_2 = \vec{b_2} = \hat{i} + 2\hat{j} + 3\hat{k}$

 \therefore Vector perpendicular to both L_1 and L_2

$$= \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -\hat{i} - 7\hat{j} + 5\hat{k}$$

:. Required unit vector

$$= \hat{b} = \frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{\sqrt{1 + 49 + 25}} = \frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$$

36. (d) The shortest distance between L_1 and L_2 is

$$= \frac{(\vec{a}_2 - \vec{a}_1).\vec{b}_1 \times \vec{b}_2}{|\vec{b}_1 \times \vec{b}_2|} = (\vec{a}_2 - \vec{a}_1).\hat{b}$$

Since,
$$a_1 = -\hat{i} - 2\hat{j} - \hat{k}$$
 $a_2 = 2\hat{i} - 2\hat{j} + 3\hat{k}$

$$\vec{a}_2 - \vec{a}_1 = 3\hat{i} + 4\hat{k} \qquad \qquad \vec{a}_2 - \vec{a}_1 \cdot \hat{b}$$

$$\therefore (3\hat{i} + 4\hat{k}) \cdot \left(\frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{5\sqrt{3}}\right) = \frac{-3 + 20}{5\sqrt{3}} = \frac{17}{5\sqrt{3}}$$

37. (c) The plane passing through (-1, -2, -1) and having normal along \vec{b} is

$$-1(x+1)-7(y+2)+5(z+1)=0$$

$$\Rightarrow x + 7y - 5z + 10 = 0$$

:. Distance of point (1, 1, 1) from the above plane is

$$= \frac{1+7\times1-5\times1+10}{\sqrt{1+49+25}} = \frac{13}{\sqrt{75}}$$

38. (d) The given planes are

$$P_1: x-y+z=1$$
 ...(1)

$$P_2: x+y-z=-1$$
 ...(2)

$$P_3: x-3y+3z=2$$
 ...(3)

Since, line L_1 is intersection of planes P_2 and P_3 . $\therefore L_1$ is parallel to the vector

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ 1 & -3 & 3 \end{vmatrix} = -4\hat{j} - 4\hat{k}$$

Line L_2 is intersection of P_3 and P_1

 $\therefore L_2$ is parallel to the vector

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & -3 & 3 \end{vmatrix} = -2\hat{j} - 2\hat{k}$$

And line L_3 is intersection of P_1 and P_2

 \therefore L₃ is parallel to the vector

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 2\hat{j} + 2\hat{k}$$

Clearly lines L_1 , L_2 and L_3 are parallel to each other.

:. Statement-1 is False

Also family of planes passing through the intersection of

$$P_1$$
 and P_2 is $P_1 + \lambda P_2 = 0$.

$$\Rightarrow x(1+\lambda) + y(\lambda-1) + z(1-\lambda) + (\lambda-1) = 0$$

The three planes have a common point

$$\frac{1+\lambda}{1} = \frac{\lambda-1}{-3} = \frac{1-\lambda}{3} = \frac{1-\lambda}{2}$$
 ...(i)

Taking $\frac{1+\lambda}{1} = \frac{1-\lambda}{2}$, we get $\lambda = -\frac{1}{3}$ and taking

$$\frac{1+\lambda}{1} = \frac{1-\lambda}{3}$$
, we get $\lambda = -\frac{2}{3}$.

- .. There is no value of λ which satisfies eq (i).
- : The three planes do not have a common point.
- ⇒ Statement 2 is true.
- : (d) is the correct option.
- 39. (d) The line of intersection of given plane is

$$3x - 6y - 2z - 15 = 0 = 2x + y - 2z - 5$$

For z = 0, we get x = 3 and y = -1

 \therefore Line passes through (3, -1, 0). Direction vector of line is

$$\vec{b} = \vec{x}_1 \times \vec{x}_2$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -6 & -2 \\ 2 & 1 & -2 \end{vmatrix}$$

$$= 14\hat{i} + 2\hat{j} + 15\hat{k}$$

$$\therefore \quad \text{Eqn. of line is } \frac{x-3}{14} = \frac{y+1}{2} = \frac{z}{15} = t$$

whose parametric form is

$$x = 3 + 14t$$
, $y = 2t - 1$, $z = 15t$

- : Statement-I is false
- :. Statement 2 is true.
- **40.** Equation of plane containing line of intersection of two given planes is given by

$$(2x-y+z-3)+\lambda(3x+y+z-5)=0$$

$$\Rightarrow (3\lambda + 2)x + (\lambda - 1)y + (\lambda + 1)z + (-5\lambda - 3) = 0$$

since distance of this plane from the pt. (2, 1, -1) is $\frac{1}{\sqrt{6}}$

$$\therefore \left| \frac{(3\lambda+2)2+(\lambda-1)1+(\lambda+1)(-1)+(-5\lambda-3)}{\sqrt{(3\lambda+2)^2+(\lambda-1)^2+(\lambda+1)^2}} \right| = \frac{1}{\sqrt{6}}$$

$$\Rightarrow \left| \frac{\lambda - 1}{\sqrt{11\lambda^2 + 12\lambda + 6}} \right| = \frac{1}{\sqrt{6}}$$

Squaring both sides, we get

$$\frac{(\lambda - 1)^2}{11\lambda^2 + 12\lambda + 6} = \frac{1}{6}$$

$$\Rightarrow 6\lambda^2 - 12\lambda + 6 - 11\lambda^2 - 12\lambda - 6 = 0$$

$$\Rightarrow$$
 $5\lambda^2 + 24\lambda = 0 \Rightarrow \lambda(5\lambda + 24) = 0$

$$\Rightarrow \lambda = 0 \text{ or } -24/5$$

.. The required equations of planes are

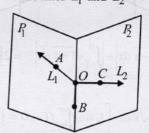
$$2x - y + z - 3 = 0$$

or
$$\left[3\left(\frac{-24}{5}\right) + 2\right]x + \left[-\frac{24}{5} - 1\right]y$$

 $+ \left[-\frac{24}{5} + 1\right]z - 5\left(\frac{-24}{5}\right) - 3 = 0$

or 62x + 29y + 19z - 105 = 041. Following fig. shows the possible situation for planes

 P_1 and P_2 and the lines L_1 and L_2



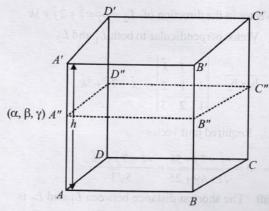
A corresponds to one of A', B', C' and B corresponds to one of the remaining of A', B', C' and C corresponds to third of A', B', C'.

Hence six such permutations are possible

e.g., One of the permutations may A = A', B = B', C = C'From the given conditions: A lies on L_1 , B lies on the line of intersection of P_1 and P_2 and 'C' lies on the line L_2 on the plane P_2 .

Now, A' lies on $L_2 = C$, B' lies on the line of intersection of P_1 and $P_2 = B$ and C' lie on L_1 on plane $P_1 = A$.

Hence there exist a particular set [A', B', C'] which is the permutation of [A, B, C] such that both (i) and (ii) is satisfied. Here $[A', B', C'] \equiv [C, B, A]$.



Let

Let equation of plane ABCD be

ax + by + cz + d = 0, h be the height of original parallelepiped S. and $A''(\alpha, \beta, \gamma)$

Then height of new parallelepipe dT is the length of perpendicular from A'' to ABCD

i.e.
$$\frac{a\alpha + b\beta + c\gamma + d}{\sqrt{a^2 + b^2 + c^2}}$$

$$V_T = \frac{90}{100} V_s$$

$$\therefore (ar ABCD) \times \frac{a\alpha + b\beta + c\gamma + d}{\sqrt{a^2 + b^2 + c^2}}$$

$$= (ar ABCD) \times h \times 0.9$$

But given that,

$$\frac{a\alpha + b\beta + c\gamma + d}{\sqrt{a^2 + b^2 + c^2}} = 0.9h$$

$$\Rightarrow a\alpha + b\beta + c\gamma + (d - 0.9h\sqrt{a^2 + b^2 + c^2}) = 0$$

:. Locus of
$$A''(\alpha, \beta, \gamma)$$
 is

$$ax + by + cz + (d - 0.9h\sqrt{a^2 + b^2 + c^2}) = 0$$

which is a plane parallel to *ABCD*. Hence proved. **43.** Equation of plane through (1, 1, 1) is

$$\begin{vmatrix} x-1 & y-1 & z-1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)(0-1)-(y-1)(0+1)+(z-1)(-1-0)=0$$

$$\Rightarrow -1(x-1)-1(y-1)-1(z-1) = 0 \Rightarrow x+y+z=3$$

$$\Rightarrow \frac{x}{3} + \frac{y}{3} + \frac{z}{3} = 1 \qquad \dots (1)$$

: plane intersect the axes at

A(3,0,0), B(0,3,0), and C(0,0,3)

:. Vol.of tetrahedron OABC

$$= \frac{1}{6} \times \text{Area of base} \times \text{altitude}$$

$$= \frac{1}{6} \times Ar(\Delta ABC) \times length of \perp^{lar} (0,0,0) to plane (1)$$

$$= \frac{1}{6} \times \frac{1}{2} \left[\frac{\sqrt{3}}{4} \times |\overline{AB}|^2 \right] \times \left[\left| \frac{-3}{\sqrt{1+1+1}} \right| \right]$$

(∴ ∆ABC is an equilateral triangle)

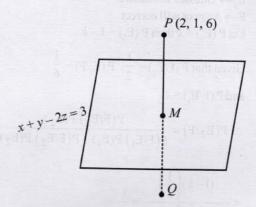
$$=\frac{1}{12} \times \frac{\sqrt{3}}{4} \times (3\sqrt{2})^2 \times \sqrt{3} = \frac{3 \times 18}{48} = \frac{9}{2}$$
 cubic units.

44. (i) Equation of plane passing through (2, 1, 0), (5, 0, 1) and (4, 1, 1) is

$$\begin{vmatrix} x-2 & y-1 & z-0 \\ 5-2 & 0-1 & 1-0 \\ 4-2 & 1-1 & 1-0 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x-2 & y-1 & z \\ 3 & -1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (x-2)(-1-0) - (y-1)(3-2) + z(0-(-2)) = 0$$

$$\Rightarrow -x+2-y+1+2z=0 \Rightarrow x+y-2z=3$$
(ii)



Eqⁿ of PQ passing through P(2, 1, 6) and \perp to plane x+y-2z=3, is given by

$$\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-6}{-2} = \lambda$$

$$Q(\lambda+2,\lambda+1,-2\lambda+6)$$

i.e.
$$M\left(\frac{2+\lambda+2}{2}, \frac{1+\lambda+1}{2}, \frac{6-2\lambda+6}{2}\right)$$

$$= \left(\frac{\lambda+4}{2}, \frac{\lambda+2}{2}, \frac{12-2\lambda}{2}\right)$$

But *M* lies on plane x + y - 2z = 3

$$\therefore \frac{\lambda+4}{2} + \frac{\lambda+2}{2} - (12-2\lambda) = 3$$

$$\Rightarrow \lambda + 4 + \lambda + 2 - 24 + 4\lambda = 6 \Rightarrow 6\lambda = 24 \Rightarrow \lambda = 4$$

$$Q(4+2,4+1,-8+6)=(6,5,-2)$$

